

Energy Positioning: Control and Economics

Daniel Kirschen – University of Washington Ian Hiskens – University of Michigan

January 21, 2015

Project Objectives

- Develop strategies and tools for:
 - Optimal scheduling of storage and demand response
 - Optimal tracking
 - Optimal post-contingency control
 - Optimal siting and sizing
- Quantify the value of distributed energy storage and demand response in terms of enhanced transmission network utilization:
 - Reduce congestion
 - Defer investments
 - Facilitate post-contingency corrective control
 - Reduce spillage of renewable energy

Approach

Project Objectives

- Unique aspects:
 - Integration of operation, control and economics aspects
 - Handling of the entire chain: planning to real-time
- Challenges:
 - Integration of different tools:
 - MPC for real-time
 - OPF for tracking
 - UC for scheduling
 - Optimization and heuristics for planning
 - Dimensionality
 - Network constraints & number of storage devices

Metrics

- How much money can we save by using distributed storage and demand response in the operation of the transmission network?
- How much spillage of renewable energy can we avoid?
- At what price does distributed energy storage become a commercially viable proposition?
- Can we perform these calculations in a reasonable amount of time? (i.e. compatible with system operation)

Outcomes

- Demonstrated methodology to calculate the value of storage and demand response
- Developed a set of prototype operation tools validated on a large system
- Gained a better understanding of how storage and demand response should be integrated in the operation of the grid

Accomplishments in 2014

- Integration of the three levels:
 - Scheduling (UC)
 - Tracking (OPF)
 - Real-time control (MPC)
- Setting up the large test case
 - WECC 2024 planning case
 - Optimize on the California part of that system
 - Validated the base case
 - Solving the base case takes a reasonable amount of time

The Home Stretch...

Get numbers and results on this large, realistic system model

Current Technology-to-Market Activity

- BPA Technology Innovation project
- Partners:
 - Snohomish PUD
 - Installing three 1MW 0.5 MWh batteries at different substations
 - 1Energy Systems
 - Developing software for control, communications and local optimization
 - University of Washington
 - Level 1 scheduling of these batteries for BPA

Further Technology-to-Market Objectives

- Full scale pilot project involving all three levels
- Integration in the suite of operating tools provided by EMS vendors

Post ARPA-E Goals

- Combination of applications of energy storage
 - Transmission congestion
 - Arbitrage
 - Ancillary services
 - Local (i.e. distribution level) uses
- To what extent can these applications be combined?
- How would this work in a competitive or collaborative environment?

